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Abstract. Objective: Object tracking in 2D ultrasound sequences of
liver to infer real-time respiratory organ movement and offer motion
compensation in image-guided abdominal interventions.

Methods: A kernel-based tracking algorithm that is adaptive to scale and
orientation changes of the tracking target is applied to 54 vessel targets in
21 ultrasound sequences acquired from volunteers under free breathing.
Tracking performance is evaluated based on manually annotated ground
truth information.

Results: Tracking results show that the algorithm is able to track the
assessed targets in a precise and robust manner in real-time performance.
The overall mean tracking error is 1.43 ± 1.22 mm.

1 Introduction

Object tracking in ultrasound (US) sequences of liver under respiratory motion is
a challenging task with several applications in, for instance, motion compensation
in abdominal interventions like needle biopsies, radio frequency ablations, and
radiation therapy.

In this work, we present the application of a scale and orientation adaptive
mean shift procedure to track vessel targets in long 2D US sequences acquired
under free breathing.3

The mean shift procedure was first introduced by Fukunaga et al. [6] for data
clustering. Cheng et al. [1] and Comaniciu et al. [3] later applied it to the task
of visual object tracking. Recently, Ning et al. proposed modifications to make
the mean shift tracker adaptive to orientation and scale [8]. In medical image
processing, the mean shift algorithm was used for vessel segmentation in CT
data [10] and for blood cell segmentation in images of blood smear [2]. In regard
to tracking in US sequences, the mean shift was employed to myocardial border
tracking [5]. An application to vessel tracking in US series of liver has, to our
knowledge, not been presented before.

3 The US image data was obtained from the ”CLUST 2014 MICCAI Challenge on
Liver Ultrasound Tracking” (http://clust14.ethz.ch/).
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2 Methods

2.1 Kernel Density Estimation and the Mean Shift

Given a set of samples assumed to be drawn from some probability distribution,
kernel density estimation (KDE) is a method to obtain a non-parametric esti-
mate of the underlying probability density function. The kernel density estimator
f̂h(x) at location x ∈ RD of a function f is

f̂h(x) =
1

NhD

N∑
i=1

K

(
x− xi
h

)
, (1)

where N is the number of samples xi ∈ RD within the kernel K with window size
h. Using the kernel profile k of the radially symmetric kernel K which satisfies
K(x) = ckk(||x||2) (ck is a normalization factor), Eq. (1) can be rewritten into

f̂h(x) =
ck
NhD

N∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
. (2)

The output of KDE is a function that is a smoothed representation of the given
sample distribution and can intuitively be understood as a generalization of
weighted histograms.

To find modes in a given KDE, mean shift procedures can be applied [3,6].
The mean shift is a gradient ascent on the gradient of the density estimate

∇f̂h(x) = 2
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NhD+2
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)
, (3)
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(5)

The second term in Eq. (5) is also referred to as the generalized mean shift vector
mK(x). We can find modes in the gradient of the density estimate obtained
by kernel K by iteratively shifting the center of K from an initial location by
mK(x). When mode-seeking is applied to images, where pixels form a regular
grid the generalized mean shift has to be extended to introduce the notion of
pixel density. This can be achieved by employing a weighted mean shift, where
each pixel location xi is assigned a weight wi derived from, for instance, the
pixel’s intensity.
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2.2 Mean Shift for Tracking in Ultrasound Sequences

To apply the mean shift mode-seeking procedure to visual tracking, the tracking
target is selected in the first frame and represented in a suitable feature space
to obtain a model of the target. For each subsequent frame a weight image is
computed by assigning a weight to each pixel which depends on the probability
of the pixel belonging to the target. On this weight image, which is also referred
to as a target confidence map, the mean shift algorithm is initialized with the
target location in the previous frame and an appropriate kernel size. After mean
shift convergence the found mode is taken as the target location in the current
frame.

For mean shift tracking in US sequences we used normalized weighted inten-
sity histograms to represent the target model q = {qu}u=1...m and the target
candidate model p(y) = {pu}u=1...m at location y, where m is the number of
bins. The weights that determine the contributions of each pixel to a histogram
bin u are based on a radially symmetric kernel K. For the target model location
y = (0, 0) and size h = 1 is assumed by using normalized pixel locations x∗i :

qu =
1

C

N∑
i=1

k(‖x∗i ‖
2
)δ[b(x∗i )− u], (6)

where δ is the Kronecker delta function, k the kernel profile of K and b(x) a
function that maps the image intensity at location x to a bin number. C is the
sum of the kernel weights at all locations such that the sum of all qu is 1. For
the target candidate model in the current frame the same model representation
is used, but with the kernel of size h shifted to the current target location y:

pu(y) =
1

Ch

N∑
i=1

k

(∥∥∥∥y − xih

∥∥∥∥2
)
δ[b(xi)− u], (7)

where Ch is the sum of the kernel weights of all locations on the regular pixel
lattice within the kernel with window size h.

Intuitively, the histograms q and p give the probability of a pixel’s intensity
belonging to the target and the target candidate model, respectively. The kernel
assigns smaller weights to pixel locations farther away from the center. This
increases robustness since pixels closer to the center are also closer to the target
center and pixel locations close to the target center offer more reliable features
due to, for instance, changes in the appearance of the target propagating from
its boundaries towards the center.

Since the aim in the current frame is to find the target candidate model p(y)
that best matches the target model q, a similarity metric is introduced next.
We follow Comaniciu et al. [4] and use the discrete Bhattacharyya coefficient [7]
ρ(y) to compare the target model q and the candidate model p(y) at location y:

ρ(y) = ρ [p(y), q] =
m∑
u=1

√
pu(y)qu. (8)
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Intuitively, the Bhattacharyya coefficient is a measure for the amount of overlap
between two sample distributions.

In each frame t, the procedure to find the location ŷ that maximizes ρ(y) is
started at location ŷ0, which in the beginning is set to the position of the target
in the previous frame ŷt−1. By linearization through a Taylor series expansion
around y0, ρ(y) can be approximated as

ρ(yo) ≈
1

2
ρ [p(y0), q] +

1

2

m∑
u=1

pu(y)

√
qu

pu(y0)
(9)
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where

wi =

m∑
u=1

δ [b(xi)− u]

√
qu

pu(y)
. (12)

The first term in Eq. (11) is independent of y, whereas the second term is
a KDE obtained using the kernel K at location y and weights wi, which can
be maximized using the mean shift algorithm (cf. Section 2.1). Maximizing this
KDE means maximizing the Bhattacharyya coefficient, which finally leads to the
minimization of the distance between p(y) and q.

The mean shift iteration step to move the kernel center position from ŷ0 to
the new position ŷ1 is

ŷ1 =

∑nh

i=1 xiwig

(∥∥∥ ŷ0−xi

h

∥∥∥2)
∑nh

i=1 wig

(∥∥∥ ŷ0−xi

h

∥∥∥2) . (13)

A favorable choice for the kernel K is the Epanechnikov kernel

KE(x) =

{
1
2
D+2
cD

(1− ‖x‖2) if ‖x‖ < 1

0 else
, (14)

where x ∈ RD and cD is the volume of the D−dimensional unit sphere. The
Epanechnikov kernel minimizes the mean integrated squared error between the
KDE and the true density [9] and, since the profile kE of KE is half-triangular
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we see that g(x) = −k′E(x) = 1. Thus, Eq. (13) can be reduced to

ŷ1 =

∑nh

i=1 xiwi∑nh

i=1 wi
. (15)

After each mean shift iteration, convergence is checked based on maximum
number of iterations and minimum length of the mean shift vector. In case of
convergence ŷt is set to ŷ1, otherwise ŷ0 is set to ŷ1 and the mean shift procedure
is repeated.

2.3 Scale and Orientation Adaptive Mean Shift Tracking

In the original mean shift tracking algorithm the kernel window size and orien-
tation remains fixed. This is unfavorable when tracking a target that changes its
size and orientation over the course of the image sequence. We follow modifica-
tions proposed by Ning et al. [8] to make the procedure adaptive to scale and
orientation. To this end, first the target’s scale is estimated, which is the area
in the target search region occupied by the target. The estimated area is then
used to adjust an ellipsoid target descriptor to match the current width, height,
and orientation of the tracking target.

Estimating the Target’s Scale In each frame t the kernel center position is
initialized with the target’s position in the previous frame ŷt−1. Also the kernel
is slightly enlarged by a factor ∆d, enabling the algorithm to capture a tracking
target that increased in size since the last frame. Since the weight wi for each
pixel within the increased search region (cf. Eq. (12)) gives the likelihood of the
pixel being part of the target, the sum of all weights (i.e. the 0th order image
moment of the search region in the weight image or target confidence map)

M00 =
∑N
i=1 wi is a good initial approximation of the area of the search region

covered by the tracking target. However, if background features are present in
the target search region, the weights of pixels within the search region that
belong to the target are amplified. This is because the probability of target
features in the target search area is decreased in the presence of background
pixels, which, as per Eq. (12) (the target candidate intensity distribution p(y)
is in the denominator), increases the weights of target pixels. Therefore, the 0th

order moment overestimates the size of the tracking target in case background
features are present.

On the other hand, the Bhattacharyya coefficient between the target model
q and the target candidate model p(y) is a measure for how many target and
background features are in the current search region. Therefore Ning et al. [8]
proposed to use the Bhattacharyya coefficient to adjust the 0th order moment
approximation for the target scale. The estimated area is computed as

Â = exp
( ρ
σ

)
M00, (16)
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where σ is a parameter that governs the magnitude of adjustment of the M00 es-
timate given a certain Bhattacharyya value. In the experiments described below
σ was empirically set to 0.2.

Estimating the Target’s Orientation For estimating the target’s orientation
an ellipsoid image descriptor (cf. Fig. 1) is introduced which is defined by a
covariance matrix based on the first and second order central image moments

Cov =

(
µ′20 µ

′
11

µ′11 µ
′
02

)
, with µ′pq =

∑N
i=1(xi,1 − x̄1)p(xi,2 − x̄2)qwi∑N

i=1 wi
, (17)

where (x̄1, x̄2) is the kernel center position. An orthogonal decomposition of Cov

Cov = U × S × UT =

[
u11 u12
u21 u22

]
×
[
λ21 0
0 λ22

]
×
[
u11 u12
u21 u22

]T
(18)

yields the semi-major axis a and semi-minor axis b of the target descriptor as
column vectors in U and the aspect ratio a

b = λ1

λ2
through the singular values

in S. Subsequently, a scaling factor k can be introduced such that a = kλ1 and
b = kλ2. Using the previously estimated target area Â (cf. Section 2.3) and the
general area formula for an ellipse, we can further derive

Â = πab = π(kλ1)(kλ2) =⇒ k =

√
Â

πλ1λ2
, (19)

which finally allows us to adjust the ellipsoid descriptor based on the estimated
target scale:

Cov = U × S × UT =

[
u11 u12
u21 u22

]
×

[
Âλ1

πλ2
0

0 Âλ2

πλ1

]
×
[
u11 u12
u21 u22

]T
. (20)

2.4 Tracking Failure Recovery

Tracking may be lost over the course of the US sequence due to, for instance,
drastic change of appearance of the tracking target, too large target displace-
ments between frames, or erroneous estimation of the target’s scale and orienta-
tion leading to a disadvantageous search area. Based on the assumed periodicity
in the motion of liver vessels induced by respiration we integrated strategies
to detect frames in which tracking performance is problematical and to recover
from these situations. A first check is based on the analysis of the Bhattacharyya
coefficient ρ. If it drops below 0.8 we discard the found target position and in-
stead use the target position from the previous frame. Furthermore, the search
region is reset to the one set by the user in the first frame. If this check triggers
twice in two subsequent frames, the target position is reset to the centroid of
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the search area selected in the first frame. A second check is based on the anal-
ysis of the estimated target size. If the target search area in the current frame
is found to be larger than three times the initial target’s size, the search area
and its position is reset to the one set in the first frame. These failure recovery
strategies are rather crude but were found to only be triggered in rare situation
where tracking would otherwise fail completely.

3 Results

The scale and orientation adaptive mean shift procedure was applied to track 54
vessel targets in 21 2D US sequences of liver acquired from volunteers under free
breathing. In total, the sequences comprised 91619 frames. The overall mean
tracking error (MTE) was 1.43 mm with a standard deviation (SD) of 1.22
mm and 95th-percentile 3.67 mm. The minimum tracking error over all frames
and tracking targets was 0.01 mm, the maximum tracking error 16.01 mm. The
algorithm was developed in MATLAB Release 2013b, and the experiments were
conducted on a machine equipped with an Intel i5-3320M processor at 2.6 GHz
clock speed and 8 GB RAM. Tracking speed using this hardware set up was
about 20 Hz. Table 1 gives an overview of the data set and the results obtained.
Fig. 1 gives a visual impression of the tracking of three vessels in series MED-02.

Fig. 1: Ellipsoid target descriptors of three tracking targets overlaid on four
frames of the US sequence MED-02. 4

4 Conclusion

Tracking of vessel targets in 2D US series of liver under free breathing using a
scale and orientation adaptive kernel-based tracking algorithm is feasible, fast,
robust and precise. For future work the incorporation of a target descriptor that
is adaptive to the outline of the tracking target seems worthwhile. By suggestion
of one reviewer of an initial draft of this article, we will also look into making
the histogram representations adaptive to global illumination changes. The ap-
plication to native 3D US is also desirable. Furthermore, other feature spaces
for model representation could be investigated with a focus on, for instance,
gradient-based descriptors and joint-histograms. Finally, a more sophisticated
failure recovery strategy based on, for instance, a collection of keyframes or
predictive motion regularization could be advantageous.

4 Link to video: http://campar.in.tum.de/files/benz/CLUST2014/MED-02.webm
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Sequence information Results

Sequence Targets Frames Resolution Probe freq. FPS MTE SD 95% Min Max
[mm/px] [Hz] [Hz] [mm] [mm] [mm] [mm] [mm]

ETH-01 1 14 516 0.71 2.22 25 2.47 1.29 4.15 0.16 11.14
ETH-02 1 5244 0.40 2.00 16 0.60 0.38 1.26 0.04 2.64
ETH-03 3 5578 0.36 1.82 17 1.34 0.69 2.32 0.07 10.34
ETH-04 1 2620 0.40 2.22 15 1.05 0.80 2.10 0.05 7.33
ETH-06 2 5586 0.37 1.82 17 2.67 1.17 4.65 0.04 8.21
ETH-07 1 4588 0.28 2.22 14 0.85 0.54 1.95 0.01 3.21
ETH-08 2 5574 0.36 1.82 17 1.53 0.54 2.56 0.06 4.89
ETH-09 2 5247 0.40 1.82 16 0.85 0.46 1.67 0.01 5.89
ETH-10 4 4587 0.40 1.82 15 0.83 1.05 1.72 0.01 16.01

All ETH sequences 1.46 1.31 3.77 0.01 16.01

MED-01 3 2470 0.41 5.50 20 0.67 0.49 1.60 0.01 5.07
MED-02 3 2478 0.41 5.50 20 1.04 0.67 2.48 0.04 6.29
MED-03 4 2456 0.41 5.50 20 1.17 0.66 2.43 0.04 4.31
MED-05 3 2458 0.41 5.50 20 1.17 0.65 2.31 0.07 4.33
MED-06 3 2443 0.41 5.50 20 1.84 0.94 3.54 0.10 5.89
MED-07 3 2450 0.41 5.50 20 1.52 0.88 3.15 0.04 6.72
MED-08 2 2442 0.41 5.50 20 1.46 0.81 2.89 0.05 4.76
MED-09 5 2436 0.41 5.50 20 1.29 0.78 2.90 0.05 10.73
MED-10 4 2427 0.41 5.50 20 1.79 1.20 4.16 0.03 13.02
MED-13 3 3304 0.35 4.00 11 1.21 0.70 2.48 0.03 6.32
MED-14 3 3304 0.35 4.00 11 1.73 0.98 3.51 0.05 8.23
MED-15 1 3304 0.35 4.00 11 2.62 1.36 5.10 0.13 6.50

All MED sequences 1.40 1.13 3.49 0.01 13.02

All sequences 1.43 1.22 3.67 0.01 16.01

Table 1: Overview of the data set comprising 54 vessel targets in 21 US sequences.
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