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Abstract. This  study investigates  the use a 2D normalized cross-correlation 
(NCC)-based algorithm to estimate  in vivo motion of liver features in 2D B-
mode  ultrasound  (US)  images.  Datasets  included  23  volunteer  imaging 
sequences,  each  containing  first  frame  annotated  points  of  interest  (POI). 
Images had a range of spatial (0.28 – 0.71 mm) and temporal (11 – 25 Hz)  
resolution.  Image  quality  was  also  highly  variable.  A  2D  block-matching 
algorithm  was  developed  to  track  POI  motion  throughout  the  imaging 
sequence.  A  correlation  and  displacement  thresholding  tracking  approach, 
which used knowledge of previous displacement and  (1) linear extrapolation, 
(2) a regularizing sinusoidal breathing model or (3) hybrid fixed-reference / 
incremental  tracking  was  use  to  account  for  potential  tracking  errors.  The  
overall mean error in vessel tracking was 2.15  ± 2.7 mm. This approach to
motion estimation  shows promise for applications such as  radiation therapy 
tumor tracking.

1   Introduction

This  study  investigates  the  estimation  of  liver  feature  motion  in  variable  quality 
volunteer 2D ultrasound amplitude demodulated data. In conformal radiation therapy, 
some form of (intra-fraction) motion management is often required [1].  If  motion 
cannot be minimized using a method such as respiratory gating [2], then this motion 
should  be  tracked  in  as  close  to  real-time  as  possible.  Tracking  cardiac  and 
respiratory induced  motion requires  an imaging  method which  samples  the target  
position  with  an  adequate  temporal  resolution.  In  radiation  therapy,  most  current 
tracking systems are based on kV x-ray imaging [3], [4]. Ultrasound has two major  
advantages over these  methods:  (i)  it  does  not impart  ionizing radiation (imaging 
dose) and (ii) it allows the visualization of soft tissue. Correlation-based techniques 
have been used to investigate ultrasound speckle and feature-based motion tracking.  
Ultrasound  speckle  tracking  of  respiratory  induced  phantom  motion  and in  vivo 
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feature-based  tracking  has  been  studied  [5].  Good  agreement  (mean  absolute  
difference  <  2  mm)  was  found  between  tracked  and  manually  annotated 
displacements using a mechanically swept 3D probe limited to a 0.5 Hz imaging rate.  
Lediju Bell et al. [6] used a 2D matrix array transducer to acquire in vivo liver motion 
data from three volunteers at imaging rates of up to 48 Hz. In the study, volumetric 
data was acquired at  high imaging rates  without  the restriction of a mechanically 
swept  ultrasound transducer.  It  was  found that  volume rates  of  8  to  12 Hz were 
required to track cardiac and respiratory induced liver motion. In many instances out-
of-plane  motion  is  small  and  2D  imaging  is  a  valid  approach  to  tissue  motion 
estimation. De Luca et al. [7] presented a scale adaptive block-matching approach to 
liver vessel tracking in long 2D ultrasound sequences. The method achieved a mean 
tracking accuracy of < 1 mm. 

(a)  (b)

Fig.  1. Ultrasound  B-mode  data  for  one  of  the  volunteers  to  illustrate  image  quality  and 
method employed to track liver features. The first frame and annotated points of interest (POI)  
are shown (a). A region of interest (ROI) is defined around each POI. A correlation-based  
block matching algorithm was used to locate this same POI, within a larger search region, in a 
subsequent ultrasound frame (b).

In the current study we employ a 2D correlation-based block-matching algorithm 
to  track  features  (blood  vessels  center-of-mass)  in  2D B-mode  ultrasound  image 
sequences (from 23 volunteers). The tracking code was applied to ultrasound data 
from three different scanners  / transducers with a range of image resolutions.  We 
investigated  non-incremental  (fixed  reference)  tracking.  For  non-incremental 
tracking, the mean inter-frame displacement is greater than for incremental tracking 
and there  is  a  higher  probability  of  tissue deformation and rotation  [4],  however, 
incremental tracking can be prone to drift error accumulation. In speckle tracking, it  
is known that tissue deformation and rotation corrupt the speckle pattern [8]. Low 
imaging rates have limited speckle-tracking accuracy to the extent that adequate  in  
vivo motion estimation has been obtained by tracking features (blood vessels) only  
[5]. In the current study, data was acquired at high frame rates (11 – 25 Hz) such that  
inter-frame rotation and deformation is expected to be small  and, additionally,  we 
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tracked tissue features which were generally highly visible throughout the imaging 
sequence.  Nevertheless,  in  2D  images  out-of-plane  motion  can  be  an  issue.  The 
tracking  performance  of  our  2D  correlation-based  automated  tracking  code  was 
quantified by comparison with manual annotations of the tissue features throughout 
the ultrasound sequence.

2   Materials and method

2.1   Ultrasound data

B-mode ultrasound data was provided by the CLUST 2014 (“MICCAI Challenge on  
Liver  Ultrasound Tracking”) [9].  2D volunteer  liver  image data  from 23 patients 
(MED and ETH datasets) was acquired by one of three ultrasound systems (Siemens 
Antares, DiPhAs Fraunhofer and Zonare z.one). Data had varying spatial (0.28 – 0.71 
mm) and temporal resolution (11 – 25 Hz) and sequences lasted from 121.2 – 580.64 
s. Examples of the volunteer image data from the Siemens Antares are shown (Fig. 
1). Some of the B-mode data contained what appeared to be electronic interference  
(Fig. 1 (a)) and large shadowing artifacts (Fig. 1 (a) and (b), from ETH-05 dataset). 
Two of the 23 volunteer datasets (MED-04 and ETH-05) were provided with ground 
truth annotations (of liver blood vessels) throughout the acquisition sequence which 
were  used  to  assess  tracking  code  performance  and  enable  code  development. 
Annotations  were  provided  in  the  following form:  frame  number,  x-pixel  (lateral 
position)  and  y-pixel  (axial  position).  For  the  remaining  datasets,  liver  features  
(blood  vessels  centers)  were  annotated  in  the  first  frame  only.  The  number  of 
annotations per image sequence ranged from one to five liver features (cf. Table. 1).

2.2   Tracking code

To detect  the  motion  of  liver  blood  vessels  center-of-mass  an  automated  (serial) 
tracking code was developed in MATLAB R2011b (MathWorks,  Inc. MA, USA).  
The code was based on the use of normalized cross-correlation (NCC) as a similarity 
metric between the current and a reference ultrasound frame. A reference region of 
interest (ROI) was defined around each annotation or point-of-interest (POI) in the 
first ultrasound frame. In subsequent ultrasound frames a larger search region was 
defined.  The  position  of  maximum  correlation  from  the  NCC  code  was  used  to  
identify the new position of the the  ROI. To improve the precision of coarse pixel 
displacement estimates, the sub-pixel (fine) displacement was calculated by fitting 
the maximum correlation and two surrounding values in the correlation matrix with a 
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second  order  function  and  finding  the  peak  (i.e.  when  the  slope,  m ==  0).  The 
tracking code output tracking results in the format: frame number, x-subpixel (lateral  
position) and y-subpixel (axial position). 

To track annotated POI motion three tracking methods were developed and each 
was used to track features in a subset of the US sequences: (1) a simple correlation  
and  displacement  thresholding  (fixed-reference)  tracking  approach,  which  used 
knowledge of previous displacement and linear extrapolation [10], (2) a regularized 
model-based tracking code using a sinusoidal breathing model (which was applied to 
two of the US sequences to investigate improvements in tracking results) and (3) a 
hybrid fixed reference / incremental (updated ROI) tracking approach (further details 
below). We visually assessed which US sequences were best suited to which method  
by plotting (overlaying) the raw displacement tracking code output (vessel center-of-
mass) on the current ultrasound frame in “real-time”. In this way, tracking errors due 
to, for example false matches within the search area, became obvious. The tracking 
method which gave the best (visually assessed) results for a particular US sequence  
was then selected.

For method (1), above, the code monitored the inter-frame displacement (mdisp) 
and  correlation  (mcorr)  (via  user-specified  thresholds)  and  limited  the  maximum 
displacement.  In  cases  when  the  inter-frame  displacement  was  larger  (and  mcorr 
smaller) than the threshold values, the current displacement estimate was replaced 
with  displacement  predicted  by  linear  extrapolation  using  the  previous  two 
displacement estimates.

For method (2), a model-based (predictive) regularization scheme was developed 
and used to track feature motion in two of the volunteer image sequences (5 and 14).  
After a user-specified period of time (number of frames), t, the tracking code fit the 
previous t seconds of raw motion estimation data (median filtered, n = 3) with a well  
known  respiratory  motion  model  [11]  and  this  was  used  to  infer  the  current  
displacement  of  the  feature  (ROI).  During  time periods  which  exhibited  potential 
tracking errors (as monitored by mcorr and mdisp), the model-predicted displacement 
could be used to infer the new position of the ROI.

 For  US  sequences  18  –  23,  out-of-plane  motion,  rotation  and  deformation 
changed the images to such an extent that standard fixed-reference tracking was not  
feasible.  Instead  the  code  monitored  the  correlation  (mcorr)  and  displacement 
(mdisp) value and used linear extrapolation to calculate displacement and update the 
reference region (ROI) if the values were below the user-defined thresholds (method 
(3)).

2.3   Analysis

The tracking code was developed and used to track motion of first frame annotated 
features  (POI)  in  twenty-three  volunteer  image  sequences.  Automated  tracking 
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results  were  evaluated  by  comparison  with  manual  annotations  of  liver  feature 
(vessels)  throughout  each  image  sequence  which  were  provided  after  automated 
tracking  was  complete.  Tracking  accuracy  was  evaluated  using  the  Euclidean 
distance  between  tracked  points  and  manually  annotated  points  which  was 
summarized by the mean and standard deviation. The run-time performance of the 
tracking code was also evaluated by calculating the average run-time for all cases.

Table 1. Volunteer B-mode data sequence spatial and temporal resolution, number of points-
of-interest (POI) and error (mean  ± standard deviation) in tracking code motion estimation
(as  quantified relative to  manual  annotations of liver  feature motion).  Listed  for  POI with 
maximum (mean  ± standard deviation)  error for that specific volunteer data-set only (POI
listed in brackets). Patients with annotations available throughout the imaging sequence are 
highlighted in bold

Sequence
number

Name Im. Res. 
[mm]

Imaging 
rate [Hz]

No. of 
POI

Tracking 
method

Track. Error 
mean ±  SD 

[mm]
1 ETH-01 0.71 25 1 (i) 1.9 ± 0.4 (1)
2 ETH-02 0.40 16 1 (i) 0.5 ± 0.2 (1)
3 ETH-03 0.36 17 3 (i) 1.6 ± 1.0 (1)
4 ETH-04 0.42 15 1 (i) 0.9 ± 1.0 (1)
5 ETH-05 0.40 15 2 (ii) 1.1 ± 1.1 (1)
6 ETH-06 0.37 17 2 (i) 0.6 ± 0.3 (2)
7 ETH-07 0.28 14 1 (i) 0.7 ± 0.3 (2)
8 ETH-08 0.36 17 2 (i)  0.9 ± 0.4 (2)
9 ETH-09 0.40 16 2 (i) 0.8 ± 0.6 (2)
10 ETH-10 0.40 15 4 (i) 1.2 ± 1.5 (3)
11 MED-01 0.41 20 3 (i) 1.8 ± 0.6 (3)
12 MED-02 0.41 20 3 (i) 1.8 ± 1.8 (2)
13 MED-03 0.41 20 4 (i) 2.3 ± 1.3 (2)
14 MED-04 0.41 20 3 (ii) 3.3 ± 1.7 (3)
15 MED-05 0.41 20 3 (i) 2.3 ± 1.3 (2)
16 MED-06 0.41 20 3 (i) 6.3 ± 7.5 (3)
17 MED-07 0.41 20 3 (i) 5.3 ± 4.2 (1)
18 MED-08 0.41 20 2 (iii) 4.9 ± 3.5 (2)
19 MED-09 0.41 20 5 (iii) 11.7 ± 5.6 (5)
20 MED-10 0.41 20 4 (iii) 6.6 ± 3.9 (1)
21 MED-13 0.35 11 3 (iii) 4.4 ± 1.4 (3)
22 MED-14 0.35 11 3 (iii) 3.4 ± 2.0 (3)
23 MED-15 0.35 11 1 (iii) 2.4 ± 1.4 (1)
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3   Results and discussion

The  accuracy  with  which  the  automated  tracking  code  could  track  multiple  liver 
features in the 23 volunteer B-mode imaging sequences is summarized in the final 
column of table  1 (the  values  for  the POI exhibiting  the  largest  tracking error  is 
listed). The lowest motion estimation error (0.5  ± 0.2 mm) was for an ultrasound
sequence  containing  a  relatively  large,  single  centrally  located  blood  vessel.  For  
many of the ultrasound sequences, there was relatively small out-of-plane motion or  
deformation  of  the  tracked  features  and  therefore  a  fixed-reference  NCC-based 
approach was adequate.  However,  on occasions the tracking code detected a false  
match within the search region, for example the hyperechogenic blood vessel wall 
would disappear (out-of-plane) leaving only the hypoechogenic vessel centre (blood) 
and the NCC code would “find” another hyperechogenic feature (i.e. generate a false 
match)  within  the  search  region.  When  the  correlation  value  (inter-frame 
displacement) for a POI decreased (increased) below a user-defined threshold (e.g, 
the  current  NCC  value  was   <  0.8,  inter-frame  displacement  <  3  mm),  linear  
extrapolation was used to account for the vessel displacement in the time interval. 
While  linear  extrapolation  may  not  be  the  most  accurate  method  [9],  it  appears  
adequate in cases when there are no times of sustained tracking errors and at the high 
frame rates of these data sets.

Fig.  2. Example  of  fixed-reference  tracking  code  raw motion  estimation  (solid  blue  line) 
exhibiting  some  obvious  tracking  errors  (false  matches)  and  application  of  model-based 
regularization to improve motion estimation results (dashed green line)

For  data  sequences  5  and  14,  a  fixed  reference  sinusoid  model-based  tracking 
approach was adopted. The model was used to fit the last t seconds of ultrasound data 
to attempt to improve tracking results (Figure 2). We used a value of t = 5 s which is 
the  approximate  average  breathing  period  of  most  patients/volunteers.  The model 
was found to work well for relatively regular breathing motion (i.e. sequences 5 and 
14) and could  detect  large  tracking  errors  (“false  matches”)  in  drifting  breathing
signals. However, when the algorithm was applied to US sequences which exhibited 
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The  tracking  code  model  could  also  be  extended  to  allow  future  prediction  and 
account  for  tracking  algorithm  latencies  should  this  be  a  significant  issue  for 
radiation dose delivery.
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