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Abstract. We describe methods for feature tracking in temporal im-
age sequences, based on a motion estimation framework called Sparse
Demons. It relies on a Gaussian-convolution model of the deformation
field; this model is embedded in a variational formulation with a cost
function defined on a finite number of points of interest. The resulting
algorithm is fast and suitable for real-time, live feature tracking. Our
methods are evaluated on the CLUST’14 database, consisting in 2D and
3D ultrasound liver sequences with landmarks or areas to be tracked.

1 Introduction

In this paper, we present methods for automatic tracking of anatomical features
in the liver, in 2D and 3D ultrasound sequences. We apply our methods to the
database of the MICCAI CLUST’14 challenge1. The features to track are land-
marks and regions placed at locations of interest such as portal or hepatic veins
bifurcations and tumors. The applicative scenario of the CLUST challenge is in-
tervention and therapy in the liver under real-time ultrasound image guidance.
More specifically, we address the issue of real-time compensation of the respira-
tory motion in the liver. To this end, we propose fast methods that do not rely
on access to “images from the future”. Moreover, we assume that:

– The ultrasound probe, be it 2D or 3D, does not drastically move during the
acquisition.

– The acquisition frame rate of the ultrasound system is high, so that the
motion between two consecutive frames is limited to a few millimeters.

For both the 2D and 3D datasets, we use a common motion estimation
framework called Sparse Demons, described in section 2. Different strategies are
adopted according to the objects to track – landmarks or regions, and the na-
ture and quality of the datasets – 2D or 3D, with or without gain control. In 2D
(sections 3 and 4), out-of-plane motion is expected, so that the method should
be robust to appearing and disappearing features. In 3D (section 5), we designed
anti-drift strategies based on the assumption that the respiratory motion is peri-
odic. The results of our methods on the CLUST datasets were evaluated by the
organization committee, based on a ground truth made of manual annotations.

1 http://clust14.ethz.ch/
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2 Sparse Demons

Feature tracking along a temporal sequence is regarded as a succession of reference-
to-template motion estimation problems; at each incoming template frame the
new positions of the tracked features are obtained in a causal manner by prop-
agating the reference positions according to the estimated displacement. Sparse
Demons is a variational approach to solve each reference-to-template problem.
The key idea of our method is to find an optimal dense, non-rigid displacement
field by minimizing an energy E defined only on a finite number of points of
interest {xi | i ∈ P}:

E =
∑
i∈P

∫
Ω

δ(x− xi) D
[
R(x)− T (x + u(x))

]
dx (1)

where R and T are the reference and template images respectively, Ω is the image
domain and δ is the Dirac function. D : R→ R is a function that penalizes the
dissimilarity between the reference and the transformed template; for instance,
D(x) = x2/2 was used in [1]. As for the displacement field, we adopt a fluid-
like regularization, which can be approximated by Gaussian filtering [2]; in this
model, u is assumed to be the result of the convolution of an auxiliary field v
with a Gaussian kernel ωσ of scale σ:

u(x) = [ωσ ∗ v] (x) =

∫
Ω

ωσ(x− y)v(y) dy (2)

where ωσ(x) = 1
2πσ2 e

‖x‖
2σ2 .

Minimizing E w.r.t. v is done by gradient descent; calculus of variations
results in the following evolution equation:

∂v

∂t
= −∇vE = −ωσ ∗

(∑
i∈P

δi∇uE

)
(3)

where δi(x) = δ(x− xi) and ∇uE is the dense gradient of E w.r.t. u:

∇uE(x) = −D′
[
R(x)− T (x + u(x))

]
∇T (x + u(x)) (4)

The subsequent algorithm (see below) has similarities with the demons algorithm
[3, 4]. Its computational complexity is however lower since image forces are not
computed in the whole image domain but only at points xi.

The following sections describe how we used this general image pair registra-
tion framework to track features in a causal manner along 2D and 3D ultrasound
liver sequences from the CLUST database. One of the values of this database is
to provide long sequences over many breathing cycles, which are challenging for
simple (t− 1)-to-t estimation schemes as errors accumulate and cause inevitable
drifting. For every subclass of the database, we investigated several anti-drift
mechanisms in a live tracking scenario. In each section, we specify the point
inputs, the dissimilarity measure, the respective expression of the subsequent
dense energy gradient (4), and propose ways to avoid drifting.
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Algorithm 1: Sparse Demons - Gradient Descent

Set k = 0 and v0 = 0
repeat

Compute uk = ωσ ∗ vk
for all xi do

Interpolate T (x + uk(xi)) and ∇T (x + uk(xi))
Compute ∇ukE(xi) according to (4)

end
Smooth the result to obtain the incremental update

δvk = −ωσ ∗

(∑
i∈P

δi∇ukE

)
Update vk+1 = vk + δt.δvk

k = k + 1
until steady state;

3 Landmark Tracking in 2D

3.1 Method

In these datasets (“ETH” and “MED”), the gray values are consistent along the
sequences. We therefore use the squared difference as dissimilarity measure, i.e.
D(x) = x2/2, which yields the following energy gradient:

∇uE(x) = −
[
R(x)− T (x + u(x))

]
∇T (x + u(x)) (5)

At each frame, the reference points of interest xi are chosen in the neighbour-
hood of the landmarks, based on the amplitude of the image gradient: pixels on
edges are selected and those in the flat regions are discarded (see Fig. 1). The
neighbourhoods are squares of size ∆p, centered on the landmarks.

The tracking consists of two phases:

Initial (t− 1)-to-t tracking From frame 1 to τ (typically 100), the template is
the incoming frame t and the reference is the previous frame (t− 1). During
this phase, a mean reference patch is concurrently built around each initial
landmark. Each reference patch consists in a small square image of size ∆p,
obtained by summing the patches centered on the corresponding landmark’s
positions at every frame (Fig. 2(b)).

1-to-t patch registration From frame τ+1 onwards, for each incoming frame,
we register template patches around the current landmark positions (Fig. 2(c)),
towards the corresponding reference patches, which yields the position cor-
rection from frame (t − 1) to t. The aim of this scheme is to prevent drift
by error accumulation, that inevitably occurs with a (t − 1)-to-t scheme
when the sequence is long. Moreover, to prevent one drifting landmark from
influencing the others, we track each landmark independently.
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Fig. 1. Reference points (shown on a frame from the MED-13 sequence): the selected
points of interest xi (blue) are the pixels with larger image gradient in the neighbour-
hood of the current landmarks (green).

(a) Frame 19 of MED-03 (b) Reference patches (c) Template patches

Fig. 2. Reference and template patches in 2D landmark tracking.
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3.2 Results

The test database for this part of the challenge contains 21 sequences of several
thousands of frames (from 2424 to 14516) and 1 to 5 landmarks to be tracked.
The parameters were tuned to σ = 30 mm, τ = 100 frames and ∆p = 30 pixels.
The tracking error is defined as the Euclidean distance to the manually anno-
tated ground truth. Table 1 below displays mean errors for all landmarks of all
sequences for the “ETH” and “MED” datasets.

Dataset MTE SD min 95% max

ETH 0.98 1.14 0.00 2.45 24.16
MED 2.48 3.59 0.02 6.89 38.88

All2Dpoints 1.74 2.78 0.00 4.67 38.88

Table 1. Results for 2D landmark tracking. Mean Tracking Errors (MTE), Standard
Deviations (SD), mininum errors (min), 95th percentiles (95%) and maximum errors
(max) are given in [mm].

4 Segmentation Tracking in 2D

4.1 Method

These sequences display some large intensity changes from one frame to the next
and using the sum of squared difference as dissimilarity measure is not suitable.
Instead, we minimize the entropy of the difference between the reference and the
transformed template, which yields the energy:

E = −
∫
R
pu(a) log (pu(a)) da (6)

pu is the continuous Parzen estimate of the probability density function of the
image difference over the the points of interest:

pu(a) =
1

|P|
∑
i∈P

∫
Ω

δ(x− xi) K
(
R(x)− T (x + u(x))− a

)
dx (7)

where K a smooth non-negative normalized Gaussian kernel. Calculus of varia-
tions results in the following dense energy gradient:

∇uE(x) = −
[
K ∗ p

′
u

pu

](
R(x)− T (x + u(x))

)
∇T (x + u(x)) (8)

Like in the previous section, the points of interest xi are selected in the
neighbourhood of the segmentation boundary, based on the amplitude of the
image gradient. Since these sequences are short, the strategy to process the
sequence is the (t− 1)-to-t scheme.
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4.2 Results

The test database for this part of the challenge contains 7 short sequences (from
51 to 105 frames) and 1 or 2 areas to be tracked. The Gaussian scale of the
displacement was tuned to σ = 30 mm. The tracking is evaluated through the
Dice coefficient between the tracked area and the manually segmented ground
truth (Table 2).

Dataset MDice SD min max

OX-01 1 86.76 5.46 74.25 96.54
OX-02 1 85.66 4.99 73.25 97.74
OX-04 1 91.43 6.57 47.22 97.66
OX-05 1 79.93 6.71 61.79 95.84
OX-06 1 76.93 9.36 53.55 94.17
OX-07 1 89.71 4.39 72.41 97.74
OX-07 2 77.42 5.25 67.39 94.42
OX-08 1 88.75 2.83 79.19 98.27

Table 2. Results for 2D area tracking. Mean Dice (MDice), Standard Deviations (SD),
minimum (min) and maximum (max) are given in [%].

5 Landmark Tracking in 3D

5.1 Method

In these datasets (“ICR”, “SMT”, and “EMC”), the gray values are consistent
along most sequences. We therefore use the squared difference as dissimilarity
measure (5), like in section 3. At each frame, the reference points of interest
xi are chosen in the neighbourhood of the landmarks on a square grid of size
80mm, regularly spaced by 10mm. Besides more sophisticated ultrasound shadow
detectors, points are simply discarded in the darkest regions. The baseline is a
(t−1)-to-t tracking, where all points of interest in all neighbourhoods are tracked
together at once. To prevent drifting, an additional 1-to-t tracking is enabled if
any of the two following triggers occurs:

Close histogram trigger From analyzing the differences between image his-
tograms w.r.t. the reference difference level computed between the first two
frames of the sequence, we can detect that the current incoming frame is
close (not exceeding more than 20% of the reference difference level) in ap-
pearance to the initial frame where source annotations were given, which
implies that a direct registration shall succeed.
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Close location trigger From trajectory analysis, when landmarks positions
get close (below 1.8 mm) to the positions of the source annotations given in
the first frame, we also deem that a direct registration shall succeed. This
trigger relies on the assumption that the probe is not moved during the
sequence acquisition.

If triggered, the 1-to-t tracking overrides the (t− 1)-to-t tracking.

5.2 Results

The database for the 3D landmark data class of the challenge contains 10 se-
quences of 54 to 159 frames and 1 to 4 landmarks to be tracked. The tracking
error is defined as the Euclidean distance to the manually annotated ground
truth. Table 3 below displays errors for all landmarks of all sequences per insti-
tution.

Dataset series MTE SD min 95% max

ICR 3.20 2.50 0.58 7.06 7.17
SMT 2.66 2.57 0.26 8.44 16.61
EMC 5.67 5.16 0.41 16.68 17.49

All3Dpoints 2.78 2.72 0.26 9.20 17.49

Table 3. Results for 3D landmark tracking. Mean Tracking Errors (MTE), Standard
Deviations (SD), minimum errors (min), 95th percentiles (95%) and maximum errors
(max) are given in [mm].

6 Discussion and Conclusion

In terms of run-time estimation, it has to be noted that for both 2D and 3D,
the tracking process is today somehow ”irregular”. Indeed, in 2D for instance,
each given feature is first processed during a training period, then a different
tracking can start. Likewise in 3D, the anti-drift strategy triggers additional
motion estimations on an unsystematic basis. Also, the processing time depends
on the number of features to be tracked. As the applicative scenario of the
contest is not completely defined (total number of features to be tracked, adding
features one by one as incoming frames flow, desired accuracy, etc.), the technical
approach is not finalized. We report orders of magnitude of the computational
load of these methods, taking into account that they have not been specifically
optimized to that respect. On a multithreaded PC platform, the following frame
rates are obtained with the described methods: around 40Hz in 2D, and around
10Hz in 3D.
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The methods described in this paper are dedicated to live real time ultra-
sound. They are still under development, and the CLUST contest greatly helps
in the design of the suitable approach and technologies. At testing and improv-
ing our methods on this challenging data, we stuck to the applicative scenario
of a causal system. The progressive evolution of the tracked features been under
scrutiny, and a final success criterion has been: whether the tracked features vi-
sually drift before the end of the sequence, and in that case whether the anti-drift
mechanisms get them back on track w.r.t. the image content of the last frames.
This is complementary to the criteria of overall average agreement or bounded
disagreement highlighted by the quantitative results. Thus we have identified
the drift to be the main issue of the tracking exercise. The 2D segmentation test
set and the 3D test set probably do not contain a sufficient number of frames to
validate that a live sequence tracking approach is reliable on the long term. In 2D
however, the test sets seem long enough so as to establish a proof of concept.
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