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Abstract. A new framework for tracking of anatomically relevant land-
marks on 2D liver ultrasound sequences is presented in this work. It
combines logDemons nonlinear registration, which estimates the motion
within ultrasound sequences, with a moving window tracking method,
that propagates the estimated motion around the region of interest to
subsequent frames. Robust and accurate nonlinear registration is ob-
tained by employing the dense Scale Invariant Feature Transform as a
similarity measure. The proposed method was evaluated on 24 sequences
from the CLUST 2015 challenge. On a total of 62 landmarks within these
sequences, a mean target error of 0.91mm was achieved, surpassing the
previous challenge best performance, 1.44mm on CLUST 2014.

1 Introduction

Ultrasound provides real-time, safe and affordable imaging of soft tissues, mak-
ing it one of the most popular techniques for tracking of internal body structures.
This however comes at the expense of considerable amounts of noise. Hence, the
challenges of using this imaging technique lie very often on the image interpre-
tation. For real time tracking of structures, such as vessels and tumours, this
translates to the need of robust and equally efficient image processing methods.

In this work, an efficient solution for tracking of anatomical structures in liver
ultrasound sequences is presented. These images are subject to high amounts
of motion due to breathing, as well as noise and shadowing effects, causing
significant intensity changes in ultrasound structure and appearance [1]. Though
not persistent over time, high levels of nonlinear deformation are observed in liver
ultrasound. Consequently, motion correction approaches for anatomical structure
tracking cannot rely only on rigid registration methods, which are much faster
than nonlinear methods.

To solve this problem, we employed a tracking framework where only the re-
gions of interest are analysed, which greatly contributes to the system’s efficiency.
In this framework, nonlinear motion correction was performed using logDemons
diffeomorphic registration, which has already been successfully applied to liver
ultrasound tracking [2]. The main contribution of this work is the use of the



Fig. 1. Sample reference ultrasound images and landmarks from the liver ultrasound
tracking challenge CLUST 2015.

dense Scale Invariant Feature Transform (dense SIFT) [3], a similarity metric
which has not yet been widely explored for medical imaging registration, but
has shown promise in computer vision problems to enhance distinctive features
of images and to be very effective on 2D image registration.

This paper is structured as follows: in Sec. 2 the method developed to track
annotations by registering liver ultrasound images is presented. This is followed
in Sec. 3 with a description of the CLUST 20154 data used evaluate the pro-
posed method, as well as the experiments conducted and their respective results.
Finally, Sec. 4 concludes this work.

2 Methods

The task addressed in the CLUST 2015 registration challenge can be described
as: given a sequence of temporal 2D images It, to estimate a set of annotation
positions x = M(t) over time based on the initial position M(1) of a relevant
structure. Here, x is a 2D spatial location and t the frame index in the se-
quence. Fig. 1 presents examples of ultrasounds images used in this work and
the landmarks being tracked.

In our method, we opted to use an image registration approach. Hence, by
computing a nonlinear transformation field Tt that registers I1 to It, M̂(t) can
be estimated as Tt(M(1)).

One of the difficulties of applying registration methods for such tasks is that
over long periods of time, large amounts of complex deformation and displace-
ment will occur in the images, hindering the registration process between far
apart acquisitions. On the specific case of liver ultrasound, nonlinear deforma-
tions are present for the observed structures, and thus nonlinear registration
is necessary to correctly identify the structures over time. However, over short
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acquisitions, the main persistent type of global motion is rigid. Hence, we opted
first for a tracking method which propagates the estimated rigid motion at each
time point to the next frame, followed by accurate deformable registration.

The proposed method consists of a tracking framework (similar to [4]), where
the images are cropped around the expected annotation location (Sec. 2.1), and
a logDemons diffeomorphic nonlinear registration framework (Sec. 2.2), using
dense SIFT, which is a highly descriptive image transform (Sec. 2.3).

2.1 Tracking

The main concept of the tracking method used here was to perform image regis-
tration between cropped patches of the image sequence. Hence, from each frame
It, a square region Wt−1(It) is extracted. Wt−1 determines the position around
where this patch should be extracted. For the first frame, I1, this is straightfor-
ward, sinceW0 is the position of the initial annotationM(1). For each subsequent
frame It (t > 1), Wt−1 is extracted around the previously estimated annotation
location M̂(t − 1). An overview of this method is shown on Algorithm 1. Each
cropped patch has w x w pixels centred on the estimated annotated position.
This method does not propagate the whole nonlinear transformation from frame
to frame, but only the translation found for the annotation.

Fig. 2 presents an example of how the tracking framework progresses by prop-
agating the previous estimated annotation location to each subsequent frame.
This method was based on the work by König et al. [4]. Unlike that work, here,
for the cases where several different annotated structures are present in the same
imaging sequence, each annotation was tracked independently. Another differ-
ence to that framework is that no upper motion bounds were applied to the
obtained transformations.

Data: Liver ultrasound 2D sequence It and the initial landmark position
M(1).

Result: Sequence of estimated landmark positions M̂(t) for each
ultrasound sequence frame.

W0(I1)← crop(I1,M(1))
M̂(1)←M(1)
t← 2
while t < number of frames do

Wt−1(It)← crop(It, M̂(t− 1))
Tt ← register(Wt−1(It),W0(I1))
M̂(t)← Tt(M(1))
t← t+ 1

end
Algorithm 1: Tracking method for liver ultrasound landmarks.

2.2 Nonlinear Registration

For each image It of the sequence, its cropped subregion around the expected an-
notation position Wt−1(It) is registered to the reference cropped image W0(I1),



Fig. 2. Sequence of images exemplifying the tracking framework used in this work. On
the first (reference) frame (a), a region of interest (red square) is cropped around the
known landmark (M(1) - red cross). This location is used as the region of interest for
the next frame (b), indicated by the red square. Image registration between these two
cropped regions (a and b - red squares) leads to a new estimation of the annotation
position (blue cross). For the next frame (c), the latest estimated annotated position is
used as the centre of the region of interest (blue square and cross) which will be used
to register to the reference region of interest (a), and after motion correction finds a
new position for the tracked structure (orange cross). This process is repeated for all
frames of an ultrasound sequence.

estimating the nonlinear transformation Tt. This transformation can then be
used to estimate the annotation position for the current frame, M̂(t) = Tt(M(0)).
For this nonlinear registration step we employed a diffeomorphic logDemons
framework [5]. Demons is an iterative registration method which finds a non-
regularised deformation field Tc by minimizing a similarity measure (Sim), but
at the same time computes a smooth regularised version (Ts) by applying a
Gaussian filter to it [6]. This is described by the following optimization problem:

T = arg min
Ts

(
Sim (W0(I1), Tc(Wt−1(It)) + Dist(Ts, Tc) + Reg(Ts)

)
(1)

where usually Dist(Ts, Tc) = ||Ts − Tc||2 and Reg(Ts) = ||Ts||2.
The logDemons version of this method ensures that the obtained transforma-

tion is invertible by restricting Ts to a subspace of diffeomorphisms (see details
in [5]).

2.3 Dense SIFT

Due to the intensities distortions mentioned in Sec. 1, most intensity-based mea-
sures of similarity lack the robustness to accurately register such ultrasound
image [2]. Hence, in this work, image intensities were not directly compared
during the logDemons registration steps. At each registration iteration, these
images were transformed using the dense Scale Invariant Feature Transform
(dense SIFT), a modified version of SIFT for dense image analysis [3,7,8]. This
method computes at each voxel a descriptor vector based on the histogram of



gradients around its neighbourhood, generating a vector-valued images. This en-
hances distinctive characteristics of the ultrasound images and therefore allows
for more accurate registration.

Transformed images using dense SIFT (SIFT(I(x)) can then be locally com-
pared as the sum-of-square-differences (SSD) of the dense SIFT feature vectors
at each voxel x:

SimSIFT(I1(x), It(x)) =
∣∣∣∣∣∣SIFT(I1(x))− SIFT(T (It(x)))

∣∣∣∣∣∣2
2

(2)

This similarity measure is used within the logDemons framework (Eq. 1).

2.4 Parameters

The cropped region around each annotation was of 51 by 51 (w x w) pixels, the
size of this region was chosen to safely contain the whole annotated structure.
For nonlinear registration, the logDemons framework was applied with three res-
olution levels with 20 iterations at each level and transformation field smoothing
σdiff = 2 pixels, these parameters were not optimised for this problem. The SIFT
Flow library was used for dense SIFT with the standard parameters: cell size =
2 and 8 bins [3].

3 Experiment, Results and Discussion

The proposed framework was evaluated on 24 2D+t liver ultrasound sequences
(from 4 different scanners) designated for the CLUST 2015 challenge. These
sequences showed a spatial resolution between 0.30mm and 0.55mm, number of
frames ranging from 895 to 5586 and image rate from 11Hz to 23Hz. A total of 62
landmarks were provided (between 1 and 4 per sequence) at the initial frame to
be tracked over the whole sequence. The method was assessed by the challenge
organizers in terms of the mean target error (MTE) and standard deviation (σ)
between the computed and ground truth landmarks at selected frames, as well as
its 95th percentile. For each of these sequences, the detailed results are presented
in Tab. 1 and the overall outcome for each different scanner is shown in Tab. 2.

The MTE over all the sequences and landmarks was 0.91mm with standard
deviation of 1.66mm. These results were below the ones obtained on the previous
ultrasound liver tracking competition, CLUST 2014, where the best reported
result was 1.44mm MTE and 2.04mm stadard deviation on a similar dataset [9].

Despite using the same parameters for all analysis, the results obtained over
different scanners did not vary much; for the best case (dataset ETH) the MTE
was 0.59mm and for the worse case (CIL) it was 1.74mm. A noteworthy result
was for sequence MED 0.6-1, where for one of the annotations (2) this framework
clearly lost track of the landmark and showed very large errors. This highlights
one of the possible flaws of the proposed tracking framework: by reducing the
analysis to cropped regions around the expected annotation location we are
prone to failures if the motion between frames is close to the size of the region



of interest (this effect is further illustrated in Fig. 3). Increasing the size of the
cropped regions could help reducing this error, however, it will lead to longer
computation time.

This algorithm was implemented on a single thread C++ program and tested
on a Intel i7-3770 computer with 3.40GHz, Ubuntu Linux 12.04 operating sys-
tem. The average frame processing speed was of 4.8 images per second, which is
close, but short of the acquisition rate of these sequences. Since the analysis for
each of the landmarks in a sequence is done independently, this speed is directly
proportional to the number of annotations, and the experiments showed a rate
of 11.8 frames per second per annotation.

Fig. 3. Illustration of an specific sequence (MED-06-1 - landmark 2) where the pro-
posed method loses track of the structure of interest. On (a) the estimated landmark
position (red cross) is centred on the structure of interest. On the subsequent frame (b)
there is a large displacement of the structure of interest, since now the estimated land-
mark position from the previous frame (red cross) and the cropped region of interest
(red square) do not contain the whole the structure. Here, the nonlinear registration
method fails to follow the observed displacement, and finds an erroneous new estimated
landmark position (blue cross).

4 Conclusions

In this work a new method for liver 2D ultrasound tracking was proposed and
evaluated within the CLUST 2015 challenge. Our method combined a nonlinear
registration method with a tracking method which focused only on the region
of interest around the tracked annotation, which then propagated the transla-
tional information from previous frames to the next frame. The nonlinear image
registration between the cropped reference and moving regions of interest (at
each frame) around the observed structure were performed using logDemons.
One of the main advantages of the proposed solution is the use of dense SIFT
as a similarity measure, a feature transform which led to better characterization
of the observed structures than standard intensity based measures.



Table 1. CLUST 2015 2D tracking results of the 62 sequences. The outcome is mea-
sured in terms of the mean target error (MTE) and standard deviation (σ) in millime-
tres for each landmark in each sequence.

Results per landmark (mm)
Dataset MTE1 σ1 MTE2 σ2 MTE3 σ3 MTE4 σ4

CIL 03 1.51 1.53 2.92 1.04
CIL 04 1.35 0.50 0.95 0.47

ETH 06-1 0.68 0.29
ETH 06-2 0.73 0.36
ETH 07-1 0.34 0.16 0.47 0.29
ETH 07-2 0.43 0.23 1.08 0.46
ETH 08-1 0.45 0.18 0.62 0.38
ETH 08-2 0.62 0.21 0.90 0.44
ETH 09-1 0.59 0.59 0.47 0.52 0.64 0.93 0.54 0.56
ETH 09-2 0.45 0.24 0.86 0.46 0.91 0.43
ETH 10-1 0.40 0.23 0.47 0.25 0.41 0.18
ETH 10-2 0.41 0.29 0.56 0.29 0.57 0.57

ICR 05 0.66 0.22 1.02 0.54
ICR 06 0.74 0.25 1.29 0.54
ICR 07 0.66 0.27 0.84 0.63
ICR 08 0.58 0.48 0.37 0.22 1.03 1.66

MED 06-1 1.93 0.89 7.73 12.26 1.15 0.50 0.98 1.33
MED 06-2 1.64 0.92 0.73 0.51 1.59 1.05
MED 07-1 0.98 0.48 0.86 0.31 1.25 0.70
MED 07-2 1.00 0.48 0.65 0.43 0.79 0.30
MED 07-3 3.06 1.92 0.86 0.44 0.79 0.42
MED 07-4 2.85 1.67 0.60 0.38 0.83 0.39 0.36 0.18

MED 08-1 0.70 0.41 1.63 0.60 0.68 0.36
MED 08-2 0.95 0.37 1.07 0.47 2.57 1.32

The highly promising results under the CLUST 2015 challenge attested the
validity of the proposed method, showing a performance at least comparable
to state-of-the-art solutions and close to real-time speed. We also were able to
identify the main conditions where our framework fails at this tracking problem,
inciting the development of solutions which can handle well large deformations
between adjacent frames. Further development can also be made in terms of the
optimisation of the method’s parameters both to improve its accuracy as well
as to reach real-time processing of ultrasound sequences (including mult-thread
computing).
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Table 2. CLUST 2015 2D tracking results for each ultrasound scanner, as well as the
final overall result. The outcome is given by the mean target error (MTE), standard
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